Valuation Uncertainty and Imperfect Introspection in Sealed-bid Auctions

David R.M. Thompson, *daveth@cs.ubc.ca* Kevin Leyton-Brown, *kevinlb@cs.ubc.ca*

March 22, 2007

Valuation Uncertainty and Imperfect Introspection...

Thompson & Leyton-Brown

Introduction	2nd Price Auctions	General Results	Conclusion
Outline			

1 Introduction

- Motivation and terminology
- Taxonomy and previous work
- Model

2 2nd Price Auctions

- Costly
- Limited

3 General Results

- Revenue
- Value of information

4 Conclusion

-

Introduction	2nd Price Auctions	General Results	Conclusion
Motivation			

• Bidding in sealed-bid, IPV settings

Example

Purchasing a used car:

- Evaluating a price is difficult.
- Residual uncertainty

Example

Pay-per-click advertising:

- i.i.d. value per click: needs data to learn distribution
- Values can change abruptly.
- How to model this for equilibrium analysis?

Introduction	2nd Price Auctions	General Results	Conclusion
Terms			

- Type divides into¹:
 - payoff type (valuation)
 - belief type (private information)
- Deliberation: action that secretly updates belief type
 - introspection: updates agent's beliefs about their own valuation.
 - strategic deliberation²: updates agent's beliefs about other agents valuation.
- Beliefs over time with residual uncertainty:
 - ex ante: no private information
 - ex interim: one agent's private information
 - ex post: all agents' private information
 - ex interim perfect: one agent's valuation
 - ex post perfect: all agents' valuations

¹Bergemann and Morris, 2006 ²Larson and Sandholm, 2001

Valuation Uncertainty and Imperfect Introspection...

Introduction	2nd Price Auctions	General Results	Conclusion
Taxonomy			

We classify settings with deliberative agents along five major axes:

- Valuation distribution: Are agents' valuations independent?
- Privacy: Can agents discover information about each other's valuations?
- Volatility: Can an agent's valuation change?
 - Perfection: Can an agent buy/consume the good without knowing his valuation?
- Costliness: Do deliberations carry a utility penalty?
- Limitations: When can agents perform deliberations?
 - Separability: Can agents condition their deliberations on information from the mechanism?

Classifications

Paper	Values	Private	Perfect	Volatile	Costly	Limits	Separable
Cremer							
et al (2003)	ind	yes	yes	no	yes	no	no
Parkes (2005)	all	yes	both	no	yes	no	no
Larson &							
Sandholm (2005)	ind	no	yes	yes	yes	no	yes
Larson (2006)	ind	no	yes	no	yes	no	no
Larson &							
Sandholm (2001)	all	no	no	yes	yes	no	both
Blumrosen							
& Nisan (2002)	ind	yes	no	no	no	yes	yes
Bergemann							
& Valimaki (2002)	all	*	no	no	yes	no	both
Persico (2000)	inter	*	no	no	yes	yes	yes
Compte							
& Jehiel (2001)	ind	yes	no	no	yes	no	both
Sandholm (2000)	ind	yes	no	no	yes	no	yes
Rasmusen (2006)	ind	yes	no	no	yes	yes	no
Our Paper	ind	yes	no	no	yes	yes	yes

- Our interest: imperfection (due to costs or limits) in separable auctions
- Other assumptions: independent, private, non-volatile, symmetric

Valuation Uncertainty and Imperfect Introspection...

Model

Definition

Our model is a six-tuple (N, f, Q, A, p, c) where:

- N is the set of all agents.
- Each agent has a valuation v_i drawn from distribution f (which has support on the interval $[\underline{v}, \overline{v}]$).
- Q is the set of possible introspections (from which each agent chooses one, q_i). q_{\emptyset} is no introspection.
- A is the set of possible signals the agent can receive, according to conditional probability distribution $p(a_i|q_i, v_i)$.
- $c(q_i, a_i)$ is the cost of the signal (quasi-linear).

3

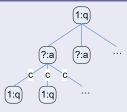
(日本) (日本) (日本)

Properties of model

Proposition

If the setting is separable, independent valued and private then risk-neutral agents will bid as though their expected valuation was their exact valuation.

Proposition


Our model is without loss of generality regarding some important features:

- deliberation costs affected by valuation
- multiple deliberations (with limitations)
- initial information

< 1[™] >

Properties of model

Proof Sketch

- Introspection: policy at every choice node
- Signal: leaf node
- Signal cost: sum of arc costs
- Initial information: Chance moves first

Larson & Sandholm, 2001

э

< 🗇 🕨

E> < E>

Introduction	2nd Price Auctions	General Results	Conclusion
Outline			

Introduction

- Motivation and terminology
- Taxonomy and previous work
- Model

2 2nd Price Auctions

- Costly
- Limited

3 General Results

- Revenue
- Value of information

4 Conclusion

< E

Theorem

If deliberations are costly then symmetric, pure-strategy Nash equilibria do not always exist.

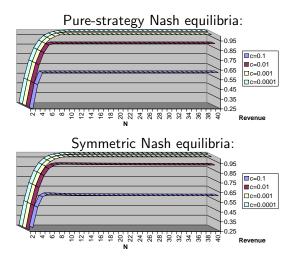
A ■

Theorem

If deliberations are costly then symmetric, pure-strategy Nash equilibria do not always exist.

Proof.

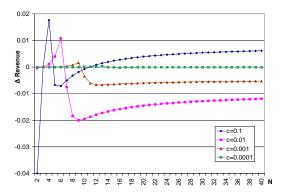
• Valuations:
$$f(v_i = 0) = f(v_i = 1) = 0.5$$


• Costly introspection q^* : $a_i = v_i$, costs $c \ (0 < c < 0.25)$

$$\begin{array}{c|ccccc} & & & & & & & & & \\ q^* & & & & & & & \\ \hline q_{\varnothing} & & & & & & \\ \hline q_{\varnothing} & & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & & \\ \hline q_{\varnothing} & & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & & \\ \hline q_{\varnothing} & & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & & \\ \hline q_{\varnothing} & & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & & \\ \hline q_{\varnothing} & & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & & \\ \hline q_{\varnothing} & & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & & \\ \hline q_{\varnothing} & & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & & \\ \hline q_{\varnothing} & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & \\ \hline q_{\varnothing} & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & \\ \hline \end{array} \end{array}$$

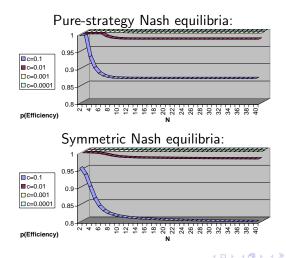
$\{0,1\}$ valuations, costly, two bidders

- Revenue differs across Nash equilibria:
 - $\bullet\,$ Constant over a range of c for asymmetric, pure NEs
 - $\bullet\,$ Varying continuously with c for symmetric, mixed NE


n bidders: revenue

æ

<ロ> (日) (日) (日) (日) (日)


n bidders: relative revenue

- Pure strategy revenue plateaus.
- Mixed strategy revenue peaks and then declines.

< ≣ >

• The probability of *ex post* perfect efficiency:

æ

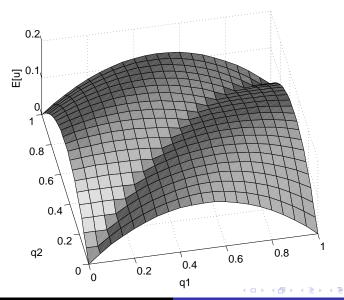
< ≣⇒

Theorem

If deliberations are limited then symmetric, pure-strategy Nash equilibria do not always exist.

Theorem

If deliberations are limited then symmetric, pure-strategy Nash equilibria do not always exist.


Proof.

- Valuations: $v_i \sim uniform[0, 1]$
- Limited, free introspection: Is $v_i < q_i$?, $a_i \in \{\text{yes}, \text{no}\}$

•
$$\mathbb{E}[u_1|q_1, q_2] = \begin{cases} (1-q_1)q_2(1+q_1-q_2)/2 & q_1 < q_2\\ (1-q_2)q_1(1+q_2-q_1)/2 & o.w. \end{cases}$$

• Pure NEs:
$$[q_1 = 1/3, q_2 = 2/3], [q_1 = 2/3, q_2 = 1/3]$$

Simple, limited case, 2-bidders

Introduction	2nd Price Auctions	General Results	Conclusion
Outline			

Introduction

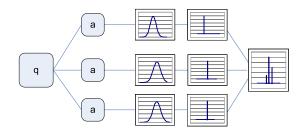
- Motivation and terminology
- Taxonomy and previous work
- Model

2 2nd Price Auctions

- Costly
- Limited

3 General Results

- Revenue
- Value of information


4 Conclusion

-

Induced valuation distribution

Definition (induced valuation distribution)

The induced valuation distribution (IVD) f_q of an introspection q is the distribution agents act as though their valuations were drawn from, given that they chose introspection q.

Theorem: revenue equivalence

Theorem

Under symmetric equilibria, all ex post efficient, separable auctions have equivalent revenue if:

- the usual revenue equivalence assumptions hold: independence, privacy, symmetry, risk-neutrality
- $\forall_{q \in Q} \text{ IVD } f_q \text{ is atomless on } [\underline{v}, \overline{v}]$

Theorem: revenue bounds

Theorem

In any ex ante individually-rational, separable auction, the expected revenue is bounded above by $\bar{v} - \sum_i \mathbb{E}[c_i]$.

• Not assumed: independence, privacy, non-volatility, efficiency

Theorem: revenue bounds

Theorem

In any ex ante individually-rational, separable auction, the expected revenue is bounded above by $\bar{v} - \sum_i \mathbb{E}[c_i]$.

• Not assumed: independence, privacy, non-volatility, efficiency

Corollary

No ex ante budget-balanced, ex ante individually-rational, separable mechanism can have a dominant strategy which involves an unbounded number of agents performing costly deliberations.

Theorem: value of information

Theorem

In efficient, separable auctions with independent private values, the value of information for any deliberation policy q falls off exponentially in the number of agents performing it.

Proof Sketch

If we only allow the k agents that perform q to participate, we have symmetric IVDs and standard $\mathbb{E}[u]$ equations apply (i.e. an agent receives the good with probability $F_q^{k-1}(\mathbb{E}[v_i|q_i = q, a_i])$.) If we re-introduce bidders who do not perform q, $\mathbb{E}[u_i|q_i = q]$ weakly decreases.

Introduction	2nd Price Auctions	General Results	Conclusion
Outline			

Introduction

- Motivation and terminology
- Taxonomy and previous work
- Model

2 2nd Price Auctions

- Costly
- Limited

3 General Results

- Revenue
- Value of information

4 Conclusion

< E

Future work

- Price of anarchy in separable auctions
- Continuous trade-off between separable and inseparable mechanisms (eg. optimal search)
- Relax assumptions

• 3 >

Taxonomy

- Model (for separable auctions with independent values and privacy)
- Analytic Nash equilibria of second price auctions:
 - Symmetric, pure-strategy NE don't always exist.
 - Revenue and efficiency differ across classes of equilibria.
- Revenue equivalence
- Revenue bound: In the limit, seller pay the costs.
- Value of information: Small costs have strategic impact.